Digital tools to facilitate the learning of algebraic factorization: a scoping review

Authors

  • María del Pilar Ortega Cervantes PrepaTec, Tecnológico de Monterrey, Campus Chiapas Carretera a Tapanatepec Kilómetro 149 + 746 Colonia Juan Crispín, 29020 Tuxtla Gutiérrez, Chiapas https://orcid.org/0009-0006-5459-3990

DOI:

https://doi.org/10.31644/RMI.V5N6.2025.A20

Keywords:

Difficulties in polynomials, Educational software, Mathematics education, Pedagogical innovation, Teaching-learning

Abstract

The objective of this scoping review was to survey recent literature on the use of digital tools in the teaching-learning of algebraic factorization, identify the reported obstacles, and analyze the digital strategies used to address them. Following the PRISMA-ScR checklist, peer-reviewed studies published between January 2020 and October 2025 were searched in five databases: Web of Science, Scopus, ERIC, SciELO, and Redalyc. The main challenge identified is the difficulty in developing structural sense and overcoming the transition from arithmetic to algebraic thinking. Documented digital interventions include dynamic geometry software (GeoGebra) for visualization, Flip Learning platforms (EdPuzzle), and personalized systems (SPOLS). It is concluded that the success of the tools lies in their conceptual didactic design, which promotes visualization and the inverse nature of factorization, although their effectiveness is limited by the barrier of prior algebraic language, which prevents their optimal use. There is a scarcity of high-rigor evidence (n=10) in the consolidated databases. Therefore, the future agenda should focus on investigating the long-term impact and the design of strategies that address the underlying structural deficiency in the faculty and student body.

Downloads

Download data is not yet available.

References

Alberto, R., Shvarts, A., Drijvers, P., & Bakker, A. (2022). Action-based embodied design for mathematics learning: A decade of variations on a theme. International Journal of Child-Computer Interaction, 32, 100419. https://doi.org/10.1016/j.ijcci.2021.100419

Andini, M., & Prabawanto, S. (2021). Relational thinking in early algebra learning: A systematic literature review. International Conference on Mathematics and Science Education (ICoMSE 2020). Journal of Physics: Conference Series, 1806 (1) doi:10.1088/1742-6596/1806/1/012086

Bolaños-Barquero, M., & Alvarado, I. S. (2021). Structural sense of first-year university students. Uniciencia, 35(1), 152–168. http://dx.doi.org/10.15359/ru.35-1.10

Bolaños-Barquero, M., Loría-Fernández, J. R., & Picado-Alfaro, M. (2023). Structural sense expressed by a group of pre-service mathematics teachers when they resolve factorization tasks. Estudios Pedagógicos, 49(3), 109–129. DOI: 10.4067/S0718-07052023000400109

Booth, J. L., Oyer, M. H., Paré-Blagoev, E. J., Elliot, A. J., Barbieri, C., Augustine, A., & Koedinger, K. R. (2015). Learning Algebra by Example in Real-World Classrooms. Journal of Research on Educational Effectiveness, 8(4), 530–551. https://doi.org/10.1080/19345747.2015.1055636

Cevikbas, M., & Kaiser, G. (2021). A systematic review on task design in dynamic and interactive mathematics learning environments (DIMLES). Mathematics, 9(4), 399. https://doi.org/10.3390/math9040399

Chau, C. T. M., Hanh, N. H., Van Hoang, P., Le Thuy, T., & Tuan, D. T. (2025). GeoGebra—An experimental tool for factoring polynomials. Lecture Notes in Networks and Systems, 1398, 97–106 https://www.springerprofessional.de/en/geogebra-an-experimental-tool-for-factoring-polynomials/50976466

Chechan, B., Ampadu, E., & Pears, A. (2023). Effect of using Desmos on high school students’ understanding and learning of functions. Eurasia Journal of Mathematics, Science and Technology Education, 19(10), em2331. https://doi.org/10.29333/ejmste/13540

Clark-Wilson, A., Robutti, O., & Thomas, M. (2020). Teaching with digital technology. ZDM – Mathematics Education, 52(7), 1223–1242 https://doi.org/10.1007/s11858-020-01196-0

Filloy, E., & Rojano, T. (1989). Solving equations: The transition from arithmetic to algebra. Learn. Math. 1989, 9, 19–26 https://flm-journal.org/Articles/3DA2C5DE336DFD448BCF339B51168E.pdf

Gómez Segura, E. (2022). Estrategias didácticas en la enseñanza de los productos notables y la factorización en la telesecundaria. RIDE. Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 12(24), e326. https://doi.org/10.23913/ride.v12i24.1143

Hidayat, R., Noor, W. N. W. M., Nasir, N., & Ayub, A. F. M. (2024). The role of GeoGebra software in conceptual understanding and engagement among secondary school student. Infinity, 13(2), 317–332. https://doi.org/10.22460/infinity.v13i2.p317-332

Hu, Q., Son, J. W., & Hodges, L. (2022). Algebra teachers’ interpretation and responses to student errors in solving quadratic equations. International Journal of Science and Mathematics Education, 20(3), 637–657 https://doi.org/10.1007/s10763-021-10166-1

Ingkavara, T., Panjaburee, P., & Wongka, W. (2023). Using the self-regulated based personalized online learning system for learning factorization in mathematics. 31st International Conference on Computers in Education (ICCE 2023), 1, 537–542 https://mahidol.elsevierpure.com/en/publications/using-the-self-regulated-based-personalized-online-learning-syste/

Jimenez, C., Jadraque, M. A., & Orcos, L. (2021). The use of Edpuzzle to learn polynomial factorization in secondary education. Bordon–Revista de Pedagogía, 73(4), 27–42 https://doi.org/10.13042/Bordon.2021.89586

Kieran, C. (1992). The learning and teaching of school algebra. En D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 390–419). Macmillan. https://doi.org/10.1108/978-1-60752-874-620251021

Kieran, C. (2007). Learning and teaching algebra: Theoretical perspectives. En F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 707–762). Information Age Publishing. https://www.researchgate.net/publication/284624451_Learning_and_teaching_algebra_at_the_middle_school_through_college_levels

Khusna, T., Akbarita, R., & Narendra, R. (2021). Comparison of principal axis factoring and maximum likelihood in determining dominant factors affecting Nahwu Shorof’s learning (Case study of Roudlotul Mutallimin Putri Islamic Boarding School). Bareksa, 15(4), 785–796.

Lin, Y.-T., & Wang, T.-C. (2022). The effects of integrating digital board game into prime factorization learning on elementary students’ flow experience. Proceedings of the International Conference on Advanced Learning Technologies (ICALT), 122–124 https://doi: 10.1109/ICALT55010.2022.00044

Looi, C.-K., & Lim, K.-S. (2009). From bar diagrams to letter-symbolic algebra: a technology-enabled bridging. Journal of Computer Assisted Learning, 25(4), 358–374. https://doi.org/10.1111/j.1365-2729.2009.00313.x

Moreno-Armella, L., Hegedus, S.J. & Kaput, J.J. (2008). From static to dynamic mathematics: historical and representational perspectives. Educ Stud Math 68, 99–111 https://doi.org/10.1007/s10649-008-9116-6

Osorio, N. D. Z., & Ospina, A. A. P. (2021). NinjaMath: Role playing game for learning factoring. Proceedings of the 2021 16th Latin American Conference on Learning Technologies (LACLO), 522–525 https://www.computer.org/csdl/proceedings-article/laclo/2021/235800a522/1BzW6dfp1F6

Pierce, R., & Stacey, K. (2010). Mapping Pedagogical Opportunities Provided by Mathematics Analysis Software. Int J Comput Math Learning 15, 1–20 (2010). https://doi.org/10.1007/s10758-010-9158-6

Pinto, D. A. M., & Ruíz, J. R. G. (2025). Learning polynomial factorization with GeoGebra and manipulative resources in a mathematics laboratory. Revista Conrado, 21(105), e4421 https://conrado.ucf.edu.cu/index.php/conrado/article/view/4421

Prisma (2018). PRISMA-Scoping Reviews. Checklist https://www.prismastatement.org/scoping

Radford, L. (2014). The progressive development of early algebraic thinking: A semiotic-cultural perspective. Math Ed Res J, 26(2), 257–277 https://doi.org/10.1007/s13394-013-0087-2

Ratnayake, I. G. (2020). Teaching algebra with digital technology: Factors influencing secondary mathematics teachers’ task development and implementation. Bulletin of the Australian Mathematical Society, 101(2), 350–352 doi:10.1017/S0004972719001436

Rodríguez-Cubillo, M.R., Del Castillo, H., & Arteaga-Martínez, B. (2021). El uso de aplicaciones móviles en el aprendizaje de las matemáticas: una revisión sistemática. Revista de la Facultad de Educación de Albacete, 36(1) https://doi.org/10.18239/ensayos.v36i1.2631

Serbin, K. S., Bae, Y., & Espinosa, S. (2024). Secondary teachers’ guided reinvention of the definitions of reducible and irreducible elements. Journal of Mathematical Behavior, 76, 101188 https://doi.org/10.1016/j.jmathb.2024.101188

Tabach, M., & Nachlieli, T. (2019). Engagement with interactive algebra applets. International Journal of Mathematical Education in Science and Technology, 50(5), 706–720. https://doi.org/10.1080/0020739X.2018.1528320

Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., … & Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850

Yamamoto, S., Enomoto, H., & Hirashima, T. (2020). Learning by problem-posing as kit-building for structure understanding of polynomial factorization. 28th International Conference on Computers in Education (ICCE 2020) https://library.apsce.net/index.php/ICCE/article/view/3900

Zhang, E. (2025). Unravelling the quality of processes of learning from errors: Insights from students’ written error reflections in factoring tasks. Learning and Instruction, 100, 102199 https://doi.org/10.1016/j.learninstruc.2025.102199

Published

2025-12-15

How to Cite

Ortega Cervantes, M. del P. (2025). Digital tools to facilitate the learning of algebraic factorization: a scoping review . Mesoamerican Journal of Research, 5(6), 1–14. https://doi.org/10.31644/RMI.V5N6.2025.A20