Production and bioactivities of the exopolysaccharides from Lactiplantibacillus plantarum BAL-29-ITTG using a Plackett-Burman experimental design
DOI:
https://doi.org/10.31644/RMI.V3N3.2023.A03Keywords:
Antibiofilm Activity, Antioxidant Activity, Exopolysaccharides, Lactic Acid Bacteria, Lactiplantibacillus plantarum BAL-29-ITTGAbstract
Microbial polysaccharides are biodegradable and biocompatible biopolymers produced by bacteria, fungi, and yeasts. The production of exopolysaccharides (EPS) by lactic acid bacteria (LAB) has gained special interest over the last decade due to the functional properties of these biopolymers. The aim of this study was to evaluate the effect of cultivation conditions on the production of EPS from Lactiplantibacillus plantarum BAL-29-ITTG, as well as its antibiofilm and antioxidant activity. The factors studied included carbon and nitrogen sources, their concentrations, temperature, and agitation speed. Using a Plackett Burman experimental design with 12 treatments, it was determined that the nitrogen source and concentration had a statistically significant impact on EPS production, reaching its maximum (619.66 mg/L) in a medium with 10 g/L lactose and 15 g/L yeast extract, incubated at 20 °C without agitation. Antioxidant activity ranged from 63.2% to 98.64%, while antibiofilm activity against E. coli, S. aureus, and P. aeruginosa was significantly influenced by the type of source (nitrogen or carbon), the concentration of nitrogen and the agitation speed. These properties make the studied EPS promising candidates for applications in the pharmaceutical, food, and cosmetic industries.
Downloads
References
Abdalla, A.K., Ayyash, M.M., Olaimat, A.N., Osaili, T.M., Al-Nabulsi, A.A., Shah, N.P. y Holley, R. 2021. Exopolysaccharides as antimicrobial agents: mechanism and spectrum of activity. Frontiers in Microbiology. 12. https://doi.org/10.3389/fmicb.2021.664395
Adesulu-Dahunsi, A. T., Sanni, A. I., Jeyaram, K., Ojediran, J. O., Ogunsakin, A.O., y Banwo, K. 2018. Extracellular polysaccharide from Weissella confusa OF126: Production, optimization, and characterization. International Journal of Biological Macromolecules. 111, 514-525. https://doi.org/10.1016/j.ijbiomac.2018.01.060
Andrade, L., Pereira, J. y Cardarelli. H. 2019. Exopolysaccharides produced by Lactobacillus plantarum: technological properties, biological activity, and potential application in the food industry. Annals of Microbiology. 69, 321-328. doi: https://doi.org/10.1007/s13213-019-01456-9
Barbosa-Bomfim, V., Pereira-Lopes Neto., J.H., Santos-Leiteb, K., De Andrade Vieira, E., Lacomini, M., Mellinger-Silva, C., Olbrich-Dos Santos, K.M. y Cardarelli, H.R. 2020. Partial characterization and antioxidant activity of exopolysaccharides produced by Lactobacillus plantarum CNPC003. LWT - Food Science and Technology. 127. https://doi.org/10.1016/j.lwt.2020.109349
Clarke K.G. 2013. Bioprocess Engineering: An Introductory Engineering and Life Science Approach. Woodhead Publishing; Cambridge, UK. Microbiology; pp. 7–24. doi: https://doi.org/10.1533/9781782421689.7
Elmansy, E.A., Elkady, E.M., Asker, M.S., Abdou, A.M., Abdallah, N.A., y Amer, S.K. 2022. Exopolysaccharide produced by Lactiplantibacillus plantarum RO30 isolated from Romi cheese: characterization, antioxidant and burn healing activity. World Journal of Microbiology & Biotechnology. 38(12): 245. https://doi.org/10.1007/s11274-022-03439-6
Guo, M., Hu, X., Wang, C., Ai, L. 2017. Polysaccharides: structure and solubility. Solubility of Polysaccharides. 138. https://doi.org/10.5772/intechopen.71570
Imran, M., Reehana, N., Jayaraj, K.A., Ahamed, A., Dhanasekaran, D., Thajuddin, N., Alharbi, N.S. y Muralitharan, G. 2016. Statistical optimization of exopolysaccharide production by Lactobacilus plantarum NTMI05 and NTMI20. International Journal of Biological Macromolecules. 93, 731-745. https://doi.org/10.1016/j.ijbiomac.2016.09.007
Jiang, Y. y Yang Z. 2018. A fuctional and genetic overview of exopolisaccharides produced by Lactobacillus plantarum. Journal of Fuction Food. 47, 229-240. https://doi.org/10.1016/j.jff.2018.05.060
Korcz, E. y Varga, L. 2021. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science and Technology. 110, 375-384. doi: https://doi.org/10.1016/j.tifs.2021.02.014
Li, X., Gu, N., Huang T.Y., Zhong, F. y Peng, G. 2023. Pseudomonas aeruginosa: A typical biofilm forming pathogen and anemerging but underestimated pathogen in food processing. Frontiers in Microbiology. 13, 1-8. doi: https://doi.org/10.3389/fmicb.2022.1114199
Lin, T., Chen, C., Chen, B., Shaw, J. y Chen, Y. 2019. Optimal economic productivity of exopolysaccharides from lactic acid bacteria with production possibility curves. Food Science and Nutrition. 7(7), 2336-2344. doi: https://doi.org/10.1002 /fsn3.1079
Liu, Z., Zhang, Z., Liangqiu., Zhang, F., Peng Xu, X., Wei H. y Tao, X. 2017. Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04. Journal of Dairy Science. 100, 6895-6905. doi: https://doi.org/10.3168/jds.2016-11944
Meesilp N. and Mesil N. 2019. Effect of microbial sanitizers for reducing biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on stainless steel by cultivation with UHT milk. Food Science Biotechnology. 28, 289–296. doi: https://doi.org/10.1007/s10068-018-0448-4
Moghannem, S., Farag, M., Shehab, A. y Azab, M. 2018. Exopolysaccharide production from Bacillus velezensis KY471306 using statistical experimental design. Brazilian Journal of Microbiology. 49(3), 452-462. Doi: https://doi.org/10.1016/j.bjm.2017.05.012
Nguyen, P., Nguyen, T., Bui, D., Hong, P., Hoang, Q. y Nguyen, H. 2020. Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications. AIMS Microbiology. 6(4), 451-469. Doi: https://doi.org/10.3934/microbiol.2020027
Ramírez-Pérez, J.I., Álvares-Gutiérrez, P.E., Luján-Hidalgo, M.C., Ovando-Chacon, S.L., Soria-Guerra, R.E., Ruiz-Cabrera, M.A., Grajales-Lugunes, A. y Abud-Archila, M. 2022. Effect of linear and branched fructans on growth and probiotic characteristics of seven Lactobacillus spp. isolated from an autochthonous beverage from Chiapas, Mexico, Archives of Microbiology. 7, 364. doi: https://doi.org/10.1007/s00203-022-02984-w
Riaz-Rajoka, M.S., Jin, M., Haobin, Z., Li, Q., Shao, D., Jiang, C., Huang, Q., Yang, H., Shi, J. y Hussain, N. 2017. Functional characterization and biotechnological potential of exopolysaccharide produced by Lactobacillus rhamnosus strains isolated from human breast milk, LWT- Food Science and Technology. 89, 638-647. doi: https://doi.org/10.1016/j.lwt.2017.11.034
Sasikumar, K., Vaikkath, D.K., Devendra, L. Nampoothiri, y K.Madhavan. 2017. An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods, Bioresource Technology. 241, 1152-1156 doi: http://dx.doi.org/10.1016/j.biortech.2017.05.075
Wang, J., Zhao, X., Yang, Y., Zhao, A. y Yang, Z. 2015. Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International Journal of Biological Macromolecules. 74, 119–126. Doi: https://doi.org/10.1016 / j.ijbiomac.2014.12.006
Xu, Y., Cui, Y., Yue, F., Liu, L., Shan, Y., Liu, B., Zhou, Y. y Lü, X. 2019. Exopolysaccharides produced by lactic acid bacteria and Bifidobacteria: Structures, physiochemical functions and applications in the food industry. Food Hydrocolloids. 94, 475-499. doi: https://doi.org/10.1016/j.foodhyd.2019.03.032
Xu Z., Xie J., Soteyome T., Peters B. M., Shirtliff M. E., Liu J., et al. 2019. Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: an underestimated concern in food safety. Current Opinion In Food Science. 26, 57–64. doi: https://doi.org/10.1016/j.cofs.2019.03.006
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mesoamerican Journal of Research
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.