Microencapsulation of chia oil and sesame oil using sporopollenin as encapsulating agent

Authors

  • César Pérez-Alonso Universidad Autónoma del Estado de México
  • Julian Cruz-Olivares Universidad Autónoma del Estado de México
  • Rosalva Leal-Silva Universidad Autónoma del Estado de México
  • Erik Alpizar-Reyes Universidad de Bío-Bío

Keywords:

Apparent effective diffusion, biopolymer, encapsulation efficiency, Lycopodium clavatum L., release profiles, vacuum encapsulation

Abstract

The objective of this work was to evaluate the sporopollenin derived from Lycopodium clavatum L. as an encapsulating agent in the encapsulating properties and release rates of chia oil and sesame oil. Four types of encapsulates were formulated using the vacuum microencapsulation process with a weight ratio of encapsulated material to encapsulating agent 1:3 to incorporate the oils using the unpurified and purified biopolymer. Micrographs of all encapsulant systems showed solid hemispherical structures of uniform size (~20 μm) with nanochannel-like cavities. Compared to unpurified sporopollenin, the purified sporopollenin presented a higher encapsulation percentage for chia oil (42%) and sesame oil (29%). The oil release profiles were adequately adjusted to the power-law type model, showing that the oil release mechanism is due to apparent effective diffusion, whose diffusivity values are in the order of 2×10-14 m2 /s, showing that the method of encapsulation and the structure of the sporopollenin directly influence this transport parameter. These results show that sporopollenin could be helpful as an encapsulating agent for bioactive compounds. Additionally, more robust studies are required to demonstrate its efficacy as an encapsulating agent in other encapsulation technologies. 

Downloads

Download data is not yet available.

References

Alpizar, E., Varela, V., Cruz, J., Carrillo, H., Álvarez, J. y Pérez, C. (2020). Microencapsulation of sesame seed oil by tamarind seed mucilage. International Journal of Biological Macromolecules, 145, 207–215. https://doi.org/10.1016/j.ijbiomac.2019.12.162

Barrier, S., Diego, A., Thomasson, M., Madden, L., Pointon, J., Wadhawan, J., Beckett, S., Atkin, S. y Mackenzie, G. (2011). Viability of plant spore exine capsules for microencapsulation. Journal of Materials Chemistry, 21, 975-981. https://doi.org/10.1039/C0JM02246B

Barrier, S., Rigby, A., Diego, A., Thomasson, M., Mackenzie, G. y Atkin, S. (2010). Sporopollenin exines: a novel natural taste masking material. LWT - Food Science and Technology, 43, 73-76. https://doi.org/10.1016/j.lwt.2009.07.001

Beirão da Costa, S., Duarte, C., Bourbon, A., Pinheiro, A., Serra, A., Martins M., Januário, M., Vicente, A., Delgadillo, I., Duarte, C. y Beirão da Costa, M. (2012). Effect of the matrix system in the delivery and in vitro bioactivity of microencapsulated oregano essential oil. Journal of

Food Engineering, 110, 190-199. https://doi.org/10.1016/j.jfoodeng.2011.05.043

Bordón, M., Alasino, N., Villanueva, A., Carrera, C., Pedroche, J., Millán, M., Ribotta, P. y Martínez, M. (2021). Scale-up and optimization of the spray drying conditions for the development of functional microparticles based on chia oil. Food and Bioproducts Processing, 130, 48–67. https://doi.org/10.1016/j.fbp.2021.08.006

Corliss, M., Boka, C., Gillissen, J., Potroz, M., Jung, H., Tan, E., Mundargi, R. y Cho, N. (2018). Preserving the inflated structure of lyophilized sporopollenin exine capsules with polyethylene glycol osmolyte. Journal of Industrial and Engineering Chemistry, 61, 255–264. https://doi.org/10.1016/j.jiec.2017.12.023

Cortés, S., Acuña, P., Rodríguez, M., Román, A., Varela, V. y Pérez C. (2019). Effect of chia mucilage addition on oxidation and release kinetics of lemon essential oil microencapsulated using mesquite gum – Chia mucilage mixtures. Food Research International, 116, 1010-1019. https://doi.org/10.1016/j.foodres.2018.09.040

Diego, A., Cousson, P., Reynaud, E., Huang, Y., Lorch, M., Binks, B., Queneau, Y., Boa, A., Atkin, S., Beckett, S. y Mackenzie, G. (2012). Sequestration of edible oil from emulsions using new single and double layered microcapsules from plant spores. Journal of Materials Chemistry, 22, 9767–9773. https://doi.org/10.1039/C2JM00103A

Diego, A., Maillet, L., Banoub, J., Lorch, M., Rigby, A., Boa, A., Atkin, S. y Mackenzie, G. (2013). Protein free microcapsules obtained from plant spores as a model for drug delivery: ibuprofen encapsulation, release and taste masking. Journal of Materials Chemistry B, 1, 707–713. https://doi.org/10.1039/C2TB00228K

Dyab, A., Mohamed, M., Meligi, N. y Mohamed, S. (2018). Encapsulation of erythromycin and bacitracin antibiotics into natural sporopollenin microcapsules: antibacterial, cytotoxicity, in vitro and in vivo release studies for enhanced bioavailability. RSC Advances, 8, 33432-33444. https://doi.org/10.1039/C8RA05499A

Geranpour, M., Assadpour, E. y Jafari, S. (2020). Recent advances in the spray drying encapsulation of essential fatty acids and functional oils. Trends in food science and technology, 102, 71-90. https://doi.org/10.1016/j.tifs.2020.05.028

Meligi, N., Dyab, A. y Paunov, V. (2021). Sustained in vitro and in vivo delivery of metformin from plant pollen-derived composite microcapsules. Pharmaceutics, 13, 1048. https://doi.org/10.3390/pharmaceutics13071048

Mohammed, A., Dyab, A., Taha, F. y El-Mageed, AI. (2021). Encapsulation of folic acid (vitamin B9) into sporopollenin microcapsules: physico-chemical characterisation, in vitro controlled release and photoprotection study. Materials Science and Engineering C, 128, 112271. https://doi.org/10.1016/j.msec.2021.112271

Mundargi, R., Tan, E., Seo, J. y Cho N. (2016). Encapsulation and controlled release formulations of 5-fluorouracil from natural Lycopodium clavatum spores. Journal of Industrial and Engineering Chemistry,89, 102-108. https://doi.org/10.1016/j.jiec.2016.01.022

Qianyu, Y., Nicolas, G. y Cordelia S. (2018). Microencapsulation of active ingredients in functional foods: from research stage to commercial food products. Trends and Food Science and Technology, 78, 167-179. https://doi.org/10.1016/j.tifs.2018.05.025

Thomasson, M., Diego, A., Barrier, S., Martin, J., Amedjou, E., Atkin, S., Queneau, Y., Boa, A. y Mackenzie, G. (2020). Sporopollenin exine capsules (SpECs) derived from Lycopodium clavatum provide practical antioxidant properties by retarding rancidification of an ω-3 oil.

Industrial Crops and Products, 154, 112714. https://doi.org/10.1016/j.indcrop.2020.112714

Uddin, M., Liyanage, S., Abidi, N. y Gill H. (2018). Physical and biochemical characterization of chemically-treated pollen shells for potential use in oral delivery of therapeutics. Journal of Pharmaceutical Sciences, 107, 3047-3059. https://doi.org/10.1016/j.xphs.2018.07.028

Us, U., Julio, L., Segura, M., Ixtaina, V. y Tomás, M. (2018). Development and characterization of spray-dried chia oil microcapsules using by-products from chia as wall material. Powder Technology, 334,1–8. https://doi.org/10.1016/j.powtec.2018.04.060

Velázquez, S., Alpizar, E., Cruz, J., Barrera, J., Rodríguez, M. y Pérez, C. (2020). Ionic gelation encapsulation of sesame oil with sodium alginate-nopal mucilage blends: Encapsulation efficiency and oxidative stability. Revista Mexicana de Ingeniería Química, 19(1), 349-362. https://doi.org/10.24275/rmiq/Alim1642

Wen-ting, Y., Xue-ting, M., Shi-jia, L., Xue-de, W., Hua-min, L. y Rui, S. (2021). Comparison of key aroma-active compounds between roasted and cold-pressed sesame oils. Food Research International, 150, Part A, 110794. https://doi.org/10.1016/j.foodres.2021.110794

Zhilei, Z., Xijun, W. y Hailong, L., (2022). Vision transformer for quality identification of sesame oil with stereoscopic fluorescence spectrum image. LWT – Food Science and Technology, 158, 113173. https://doi.org/10.1016/j.lwt.2022.113173

Published

2023-02-02

How to Cite

Pérez-Alonso, C., Cruz-Olivares, J., Leal-Silva, R., & Alpizar-Reyes, E. (2023). Microencapsulation of chia oil and sesame oil using sporopollenin as encapsulating agent. Mesoamerican Journal of Research, 2(2), 31–42. Retrieved from https://rmi.unach.mx/index.php/rmi/article/view/29

Issue

Section

Full length paper