Herramientas digitales para facilitar el aprendizaje de la factorización algebraica: revisión de alcance
DOI:
https://doi.org/10.31644/RMI.V5N6.2025.A20Palabras clave:
Enseñanza-aprendizaje, Dificultades en polinomios, Innovación pedagógica, Software educativo, Educación matemáticaResumen
El objetivo de esta revisión de alcance fue mapear la literatura reciente sobre el uso de herramientas digitales en la enseñanza-aprendizaje de la factorización algebraica, identificar los obstáculos que se reportan y estrategias digitales utilizadas para abordarlos. Siguiendo la lista de cotejo PRISMA-ScR, se buscaron estudios de revisión por pares publicados entre enero de 2020 y octubre de 2025 en cinco bases de datos: Web of Science, Scopus, ERIC, SciELO y Redalyc. Se encontró que el reto principal es la dificultad para desarrollar el sentido estructural y superar la transición del pensamiento aritmético al algebraico. Las intervenciones digitales documentadas incluyen software de geometría dinámica (GeoGebra) para la visualización, plataformas de Flip Learning (EdPuzzle) y sistemas personalizados (SPOLS). Se concluye que el éxito de las herramientas reside en su diseño didáctico conceptual que promueve la visualización y la naturaleza inversa de la factorización, si bien su efectividad está limitada por la barrera del lenguaje algebraico previo que impide su uso óptimo. Hay escasez de evidencia (n=10) en las bases consolidadas de alto rigor, por lo que la agenda futura debe enfocarse en la investigación del impacto a largo plazo y el diseño de estrategias que aborden la deficiencia estructural de base en el profesorado y el estudiantado.
Descargas
Citas
Alberto, R., Shvarts, A., Drijvers, P., & Bakker, A. (2022). Action-based embodied design for mathematics learning: A decade of variations on a theme. International Journal of Child-Computer Interaction, 32, 100419. https://doi.org/10.1016/j.ijcci.2021.100419
Andini, M., & Prabawanto, S. (2021). Relational thinking in early algebra learning: A systematic literature review. International Conference on Mathematics and Science Education (ICoMSE 2020). Journal of Physics: Conference Series, 1806 (1) doi:10.1088/1742-6596/1806/1/012086
Bolaños-Barquero, M., & Alvarado, I. S. (2021). Structural sense of first-year university students. Uniciencia, 35(1), 152–168. http://dx.doi.org/10.15359/ru.35-1.10
Bolaños-Barquero, M., Loría-Fernández, J. R., & Picado-Alfaro, M. (2023). Structural sense expressed by a group of pre-service mathematics teachers when they resolve factorization tasks. Estudios Pedagógicos, 49(3), 109–129. DOI: 10.4067/S0718-07052023000400109
Booth, J. L., Oyer, M. H., Paré-Blagoev, E. J., Elliot, A. J., Barbieri, C., Augustine, A., & Koedinger, K. R. (2015). Learning Algebra by Example in Real-World Classrooms. Journal of Research on Educational Effectiveness, 8(4), 530–551. https://doi.org/10.1080/19345747.2015.1055636
Cevikbas, M., & Kaiser, G. (2021). A systematic review on task design in dynamic and interactive mathematics learning environments (DIMLES). Mathematics, 9(4), 399. https://doi.org/10.3390/math9040399
Chau, C. T. M., Hanh, N. H., Van Hoang, P., Le Thuy, T., & Tuan, D. T. (2025). GeoGebra—An experimental tool for factoring polynomials. Lecture Notes in Networks and Systems, 1398, 97–106 https://www.springerprofessional.de/en/geogebra-an-experimental-tool-for-factoring-polynomials/50976466
Chechan, B., Ampadu, E., & Pears, A. (2023). Effect of using Desmos on high school students’ understanding and learning of functions. Eurasia Journal of Mathematics, Science and Technology Education, 19(10), em2331. https://doi.org/10.29333/ejmste/13540
Clark-Wilson, A., Robutti, O., & Thomas, M. (2020). Teaching with digital technology. ZDM – Mathematics Education, 52(7), 1223–1242 https://doi.org/10.1007/s11858-020-01196-0
Filloy, E., & Rojano, T. (1989). Solving equations: The transition from arithmetic to algebra. Learn. Math. 1989, 9, 19–26 https://flm-journal.org/Articles/3DA2C5DE336DFD448BCF339B51168E.pdf
Gómez Segura, E. (2022). Estrategias didácticas en la enseñanza de los productos notables y la factorización en la telesecundaria. RIDE. Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 12(24), e326. https://doi.org/10.23913/ride.v12i24.1143
Hidayat, R., Noor, W. N. W. M., Nasir, N., & Ayub, A. F. M. (2024). The role of GeoGebra software in conceptual understanding and engagement among secondary school student. Infinity, 13(2), 317–332. https://doi.org/10.22460/infinity.v13i2.p317-332
Hu, Q., Son, J. W., & Hodges, L. (2022). Algebra teachers’ interpretation and responses to student errors in solving quadratic equations. International Journal of Science and Mathematics Education, 20(3), 637–657 https://doi.org/10.1007/s10763-021-10166-1
Ingkavara, T., Panjaburee, P., & Wongka, W. (2023). Using the self-regulated based personalized online learning system for learning factorization in mathematics. 31st International Conference on Computers in Education (ICCE 2023), 1, 537–542 https://mahidol.elsevierpure.com/en/publications/using-the-self-regulated-based-personalized-online-learning-syste/
Jimenez, C., Jadraque, M. A., & Orcos, L. (2021). The use of Edpuzzle to learn polynomial factorization in secondary education. Bordon–Revista de Pedagogía, 73(4), 27–42 https://doi.org/10.13042/Bordon.2021.89586
Kieran, C. (1992). The learning and teaching of school algebra. En D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 390–419). Macmillan. https://doi.org/10.1108/978-1-60752-874-620251021
Kieran, C. (2007). Learning and teaching algebra: Theoretical perspectives. En F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 707–762). Information Age Publishing. https://www.researchgate.net/publication/284624451_Learning_and_teaching_algebra_at_the_middle_school_through_college_levels
Khusna, T., Akbarita, R., & Narendra, R. (2021). Comparison of principal axis factoring and maximum likelihood in determining dominant factors affecting Nahwu Shorof’s learning (Case study of Roudlotul Mutallimin Putri Islamic Boarding School). Bareksa, 15(4), 785–796.
Lin, Y.-T., & Wang, T.-C. (2022). The effects of integrating digital board game into prime factorization learning on elementary students’ flow experience. Proceedings of the International Conference on Advanced Learning Technologies (ICALT), 122–124 https://doi: 10.1109/ICALT55010.2022.00044
Looi, C.-K., & Lim, K.-S. (2009). From bar diagrams to letter-symbolic algebra: a technology-enabled bridging. Journal of Computer Assisted Learning, 25(4), 358–374. https://doi.org/10.1111/j.1365-2729.2009.00313.x
Moreno-Armella, L., Hegedus, S.J. & Kaput, J.J. (2008). From static to dynamic mathematics: historical and representational perspectives. Educ Stud Math 68, 99–111 https://doi.org/10.1007/s10649-008-9116-6
Osorio, N. D. Z., & Ospina, A. A. P. (2021). NinjaMath: Role playing game for learning factoring. Proceedings of the 2021 16th Latin American Conference on Learning Technologies (LACLO), 522–525 https://www.computer.org/csdl/proceedings-article/laclo/2021/235800a522/1BzW6dfp1F6
Pierce, R., & Stacey, K. (2010). Mapping Pedagogical Opportunities Provided by Mathematics Analysis Software. Int J Comput Math Learning 15, 1–20 (2010). https://doi.org/10.1007/s10758-010-9158-6
Pinto, D. A. M., & Ruíz, J. R. G. (2025). Learning polynomial factorization with GeoGebra and manipulative resources in a mathematics laboratory. Revista Conrado, 21(105), e4421 https://conrado.ucf.edu.cu/index.php/conrado/article/view/4421
Prisma (2018). PRISMA-Scoping Reviews. Checklist https://www.prismastatement.org/scoping
Radford, L. (2014). The progressive development of early algebraic thinking: A semiotic-cultural perspective. Math Ed Res J, 26(2), 257–277 https://doi.org/10.1007/s13394-013-0087-2
Ratnayake, I. G. (2020). Teaching algebra with digital technology: Factors influencing secondary mathematics teachers’ task development and implementation. Bulletin of the Australian Mathematical Society, 101(2), 350–352 doi:10.1017/S0004972719001436
Rodríguez-Cubillo, M.R., Del Castillo, H., & Arteaga-Martínez, B. (2021). El uso de aplicaciones móviles en el aprendizaje de las matemáticas: una revisión sistemática. Revista de la Facultad de Educación de Albacete, 36(1) https://doi.org/10.18239/ensayos.v36i1.2631
Serbin, K. S., Bae, Y., & Espinosa, S. (2024). Secondary teachers’ guided reinvention of the definitions of reducible and irreducible elements. Journal of Mathematical Behavior, 76, 101188 https://doi.org/10.1016/j.jmathb.2024.101188
Tabach, M., & Nachlieli, T. (2019). Engagement with interactive algebra applets. International Journal of Mathematical Education in Science and Technology, 50(5), 706–720. https://doi.org/10.1080/0020739X.2018.1528320
Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., … & Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850
Yamamoto, S., Enomoto, H., & Hirashima, T. (2020). Learning by problem-posing as kit-building for structure understanding of polynomial factorization. 28th International Conference on Computers in Education (ICCE 2020) https://library.apsce.net/index.php/ICCE/article/view/3900
Zhang, E. (2025). Unravelling the quality of processes of learning from errors: Insights from students’ written error reflections in factoring tasks. Learning and Instruction, 100, 102199 https://doi.org/10.1016/j.learninstruc.2025.102199
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista Mesoamericana de Investigación

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
