Producción y bioactividades de los exopolisacáridos de Lactiplantibacillus plantarum BAL-29-ITTG utilizando un diseño experimental Plackett-Burman
DOI:
https://doi.org/10.31644/RMI.V3N3.2023.A03Palabras clave:
Antibiopelícula, Actividad Antioxidante, Bacterias Ácido Lácticas, Exopolisacáridos, Lactiplantibacillus plantarum BAL-29-ITTGResumen
Los polisacáridos microbianos son biopolímeros biodegradables y biocompatibles producidos por bacterias, hongos y levaduras. La producción de exopolisacáridos (EPS) por bacterias ácido lácticas (BAL) ha ganado un interés especial durante la última década debido a las propiedades funcionales de estos biopolímeros. El objetivo de este trabajo fue evaluar el efecto de las condiciones de cultivo sobre la producción de EPS provenientes de Lactiplantibacillus plantarum BAL-29-ITTG, así como su actividad antibiopelícula y antioxidante. Los factores estudiados fueron las fuentes de carbono y nitrógeno, sus concentraciones, la temperatura y la velocidad de agitación. Utilizando un diseño experimental Plackett Burman con 12 tratamientos, se determinó que la fuente y concentración de nitrógeno tuvieron un impacto estadísticamente significativo en la producción de EPS, alcanzando su máximo (619.66 mg/L) en un medio con lactosa a 10 g/L y extracto de levadura a 15 g/L, incubado a 20 °C sin agitación. La actividad antioxidante varió entre 63.2% y 98.64%, mientras que la actividad antibiopelícula sobre E. coli, S. aureus y P. aeruginosa fue influenciada significativamente por la fuente, concentración de nitrógeno y velocidad de agitación. Estas propiedades hacen que los EPS estudiados sean candidatos prometedores para aplicaciones en la industria farmacéutica, alimentaria y cosmética.
Descargas
Citas
Abdalla, A.K., Ayyash, M.M., Olaimat, A.N., Osaili, T.M., Al-Nabulsi, A.A., Shah, N.P. y Holley, R. 2021. Exopolysaccharides as antimicrobial agents: mechanism and spectrum of activity. Frontiers in Microbiology. 12. https://doi.org/10.3389/fmicb.2021.664395
Adesulu-Dahunsi, A. T., Sanni, A. I., Jeyaram, K., Ojediran, J. O., Ogunsakin, A.O., y Banwo, K. 2018. Extracellular polysaccharide from Weissella confusa OF126: Production, optimization, and characterization. International Journal of Biological Macromolecules. 111, 514-525. https://doi.org/10.1016/j.ijbiomac.2018.01.060
Andrade, L., Pereira, J. y Cardarelli. H. 2019. Exopolysaccharides produced by Lactobacillus plantarum: technological properties, biological activity, and potential application in the food industry. Annals of Microbiology. 69, 321-328. doi: https://doi.org/10.1007/s13213-019-01456-9
Barbosa-Bomfim, V., Pereira-Lopes Neto., J.H., Santos-Leiteb, K., De Andrade Vieira, E., Lacomini, M., Mellinger-Silva, C., Olbrich-Dos Santos, K.M. y Cardarelli, H.R. 2020. Partial characterization and antioxidant activity of exopolysaccharides produced by Lactobacillus plantarum CNPC003. LWT - Food Science and Technology. 127. https://doi.org/10.1016/j.lwt.2020.109349
Clarke K.G. 2013. Bioprocess Engineering: An Introductory Engineering and Life Science Approach. Woodhead Publishing; Cambridge, UK. Microbiology; pp. 7–24. doi: https://doi.org/10.1533/9781782421689.7
Elmansy, E.A., Elkady, E.M., Asker, M.S., Abdou, A.M., Abdallah, N.A., y Amer, S.K. 2022. Exopolysaccharide produced by Lactiplantibacillus plantarum RO30 isolated from Romi cheese: characterization, antioxidant and burn healing activity. World Journal of Microbiology & Biotechnology. 38(12): 245. https://doi.org/10.1007/s11274-022-03439-6
Guo, M., Hu, X., Wang, C., Ai, L. 2017. Polysaccharides: structure and solubility. Solubility of Polysaccharides. 138. https://doi.org/10.5772/intechopen.71570
Imran, M., Reehana, N., Jayaraj, K.A., Ahamed, A., Dhanasekaran, D., Thajuddin, N., Alharbi, N.S. y Muralitharan, G. 2016. Statistical optimization of exopolysaccharide production by Lactobacilus plantarum NTMI05 and NTMI20. International Journal of Biological Macromolecules. 93, 731-745. https://doi.org/10.1016/j.ijbiomac.2016.09.007
Jiang, Y. y Yang Z. 2018. A fuctional and genetic overview of exopolisaccharides produced by Lactobacillus plantarum. Journal of Fuction Food. 47, 229-240. https://doi.org/10.1016/j.jff.2018.05.060
Korcz, E. y Varga, L. 2021. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science and Technology. 110, 375-384. doi: https://doi.org/10.1016/j.tifs.2021.02.014
Li, X., Gu, N., Huang T.Y., Zhong, F. y Peng, G. 2023. Pseudomonas aeruginosa: A typical biofilm forming pathogen and anemerging but underestimated pathogen in food processing. Frontiers in Microbiology. 13, 1-8. doi: https://doi.org/10.3389/fmicb.2022.1114199
Lin, T., Chen, C., Chen, B., Shaw, J. y Chen, Y. 2019. Optimal economic productivity of exopolysaccharides from lactic acid bacteria with production possibility curves. Food Science and Nutrition. 7(7), 2336-2344. doi: https://doi.org/10.1002 /fsn3.1079
Liu, Z., Zhang, Z., Liangqiu., Zhang, F., Peng Xu, X., Wei H. y Tao, X. 2017. Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04. Journal of Dairy Science. 100, 6895-6905. doi: https://doi.org/10.3168/jds.2016-11944
Meesilp N. and Mesil N. 2019. Effect of microbial sanitizers for reducing biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on stainless steel by cultivation with UHT milk. Food Science Biotechnology. 28, 289–296. doi: https://doi.org/10.1007/s10068-018-0448-4
Moghannem, S., Farag, M., Shehab, A. y Azab, M. 2018. Exopolysaccharide production from Bacillus velezensis KY471306 using statistical experimental design. Brazilian Journal of Microbiology. 49(3), 452-462. Doi: https://doi.org/10.1016/j.bjm.2017.05.012
Nguyen, P., Nguyen, T., Bui, D., Hong, P., Hoang, Q. y Nguyen, H. 2020. Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications. AIMS Microbiology. 6(4), 451-469. Doi: https://doi.org/10.3934/microbiol.2020027
Ramírez-Pérez, J.I., Álvares-Gutiérrez, P.E., Luján-Hidalgo, M.C., Ovando-Chacon, S.L., Soria-Guerra, R.E., Ruiz-Cabrera, M.A., Grajales-Lugunes, A. y Abud-Archila, M. 2022. Effect of linear and branched fructans on growth and probiotic characteristics of seven Lactobacillus spp. isolated from an autochthonous beverage from Chiapas, Mexico, Archives of Microbiology. 7, 364. doi: https://doi.org/10.1007/s00203-022-02984-w
Riaz-Rajoka, M.S., Jin, M., Haobin, Z., Li, Q., Shao, D., Jiang, C., Huang, Q., Yang, H., Shi, J. y Hussain, N. 2017. Functional characterization and biotechnological potential of exopolysaccharide produced by Lactobacillus rhamnosus strains isolated from human breast milk, LWT- Food Science and Technology. 89, 638-647. doi: https://doi.org/10.1016/j.lwt.2017.11.034
Sasikumar, K., Vaikkath, D.K., Devendra, L. Nampoothiri, y K.Madhavan. 2017. An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods, Bioresource Technology. 241, 1152-1156 doi: http://dx.doi.org/10.1016/j.biortech.2017.05.075
Wang, J., Zhao, X., Yang, Y., Zhao, A. y Yang, Z. 2015. Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International Journal of Biological Macromolecules. 74, 119–126. Doi: https://doi.org/10.1016 / j.ijbiomac.2014.12.006
Xu, Y., Cui, Y., Yue, F., Liu, L., Shan, Y., Liu, B., Zhou, Y. y Lü, X. 2019. Exopolysaccharides produced by lactic acid bacteria and Bifidobacteria: Structures, physiochemical functions and applications in the food industry. Food Hydrocolloids. 94, 475-499. doi: https://doi.org/10.1016/j.foodhyd.2019.03.032
Xu Z., Xie J., Soteyome T., Peters B. M., Shirtliff M. E., Liu J., et al. 2019. Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: an underestimated concern in food safety. Current Opinion In Food Science. 26, 57–64. doi: https://doi.org/10.1016/j.cofs.2019.03.006
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Revista Mesoamericana de Investigación
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.